Астрономы NASA хотели бы превратить Солнце в гигантский космический телескоп

Астрономы NASA хотели бы превратить Солнце в гигантский космический телескоп

Астрономы NASA пытаются заглянуть все дальше и дальше во Вселенную, и поэтому им необходимы большие и очень мощные телескопы. И именно по этой причине команда специалистов из Лаборатории реактивного движения (JPL) предложила идею использования самого крупного объекта в нашей системе – Солнца – в качестве гигантского космического «увеличительного стекла».

Согласно общей теории относительности Эйнштейна, массивные объекты способны искривлять пространство вокруг себя, что заставляет другие объекты, включая свет, которые двигаются через это пространство, тоже искривляться. И при подходящих условиях этот свет может искривляться таким образом, что начинает играть роль линзы, с помощью которой можно видеть то, что находится за объектом. Этот эффект носит название гравитационного линзирования, и астрономы активно его используют уже многие годы, чтобы многократно, но при этом пассивно, а не напрямую, увеличивать мощность наших телескопов. Благодаря этому эффекту мы, например, обнаружили экзопланету Кеплер 452b, расположенную в сотнях миллионов световых лет от нас.

Звучит, конечно же, все очень интересно, но реализовать такой проект на практике потребует преодоления множества технических трудностей. Выступая с презентацией на недавнем мероприятии NASA Planetary Science Vision 2050, команда из JPS рассказала о том, что в этом случае обзорные инструменты придется установить на расстоянии в 550 астрономических единиц от Солнца, чтобы имелась возможность правильной фокусировки его света. Для справки: 1 астрономическая единица (а. е.) равна расстоянию от Солнца до Земли. Другими словами, все наше научное оборудование в таком случае должно будет располагаться где-то в межзвездном пространстве. Для сравнения: тот же космический зонд «Вояджер-1» — самый удаленный от Земли рукотворный космический объект – находится на расстоянии «всего» 137 астрономических единиц от Земли. При этом для преодоления такой дистанции маленькому космическому аппарату понадобилось 40 лет.

Кроме того, имеется некоторая проблема, связанная с орбитой нашей планеты. В зависимости от положения нашей планеты относительно Солнца и оборудования для наблюдений, временное окно для самих этих наблюдений и исследования конкретно взятых звездных областей будет крайней ограничено.

Но, несмотря на все эти технические трудности, пользу от установки подобной системы сложно будет переоценить. Например, сейчас астрономам бывает порой очень сложно, а в некоторых случаях и вовсе невозможно отличить потенциальную экзопланету от звезды, возле которой она может оборачиваться. В большинстве случаев все, что мы можем видеть, это небольшой набор светлых пикселей (как это было, например, в случае с последними «изображениями» системы TRAPPIST-1). Однако при использовании Солнца в качестве гравитационной линзы, а также технологий, позволяющих снизить яркость света звезды, мы сможем действительно различать и вести наблюдение непосредственно за самими экзопланетами.

Более того, в данном случае мы сможем получать и более четкие снимки в более высоком разрешении, по сравнению с теми, что можем получать сейчас. Вместо изображений с парой пикселей в центре мы сможем получать изображения 1000 x 1000 пикселей. Этого будет вполне достаточно, чтобы разглядеть 10-километровую площадь поверхности планеты на расстоянии 100 световых лет. Тот же космический телескоп «Хаббл», являющийся одним из лучших и передовых космических телескопов современности, неспособен на такое, даже если мы будем смотреть с помощью него за Марсом. Повышенная разрешающая способность также повысит и наши возможности в анализе химического состава атмосферы удаленных экзопланет с помощью методов спектроскопии.

Несмотря на всю сложность внедрения подобной системы, уровень научной пользы от такого проекта действительно будет астрономических масштабов.

10.12.2018

Похожие записи